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Abstract

OBJECTIVE: Gestational perfluoroalkyl substances exposure has been associated with decreased 

birthweight. We determined if gestational perfluoroalkyl substances exposure was associated with 

fetal metabolic markers using data from the HOME Study, a prospective birth cohort of pregnant 

women and their children in Cincinnati, Ohio.

METHODS: Maternal serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctane 

sulfonic acid (PFOS), perfluorononanoic acid, and perfluorohexane sulfonic acid were quantified. 

We measured neonatal adipocytokine (leptin and adiponectin) concentrations in umbilical cord 

serum, and estimated percent differences with a 2-fold increase in maternal perfluoroalkyl 

substances concentrations among 230 mother-infant pairs.

RESULTS: Median maternal serum PFOA and PFOS concentrations were 5.6 ng/mL and 14 

ng/mL, respectively. Leptin was positively correlated with infant birthweight (p < 0.001). There 
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were no statistically significant associations between maternal perfluoroalkyl substances and 

neonatal adipocytokine concentrations; each 2-fold increase in PFOA was associated with a non-

significant increase in leptin (5%; 95% CI: −10, 22) and adiponectin (7%; 95% CI: −4, 19).

CONCLUSION: Despite known associations with reduced birthweight, gestational serum 

perfluoroalkyl substances concentrations were not associated with neonatal adipocytokine 

concentrations. Further exploration of pathways of perfluoroalkyl substances associated changes in 

birthweight may help identify biomarkers that could be used to identify at-risk populations and 

develop interventions.

INTRODUCTION

Perfluoroalkyl substances are a class of man-made endocrine disrupting chemicals used in 

some packaging materials, food containers, fire-fighting foams, industrial surfactants, and 

stainand water-resistant coatings (e.g., carpets, upholstery, and apparel).1 While diet is the 

primary source of perfluoroalkyl substances exposure in humans, exposure through 

contaminated drinking water is widespread in communities in the United States.2,3 Greater 

than 6 million U.S. residents are at risk of potentially harmful exposure to some 

perfluoroalkyl substances from drinking water.3 Because of their strong carbonfluoride 

bonds, perfluoroalkyl substances are resistant to chemical, thermal, and biological 

degradation, resulting in accumulation in tissues and biological half-lives ranging from 3.8 

to 7.3 years.1,4 Four specific perfluoroalkyl substances, perfluorooctanoic acid (PFOA), 

perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane 

sulfonic acid (PFHxS) have been detected almost universally in the serum of pregnant 

women and children.5 Prenatal perfluoroalkyl substances exposure has been associated with 

decreased birthweight,6,7 increased “catch-up” growth,8 and excess adiposity and risk of 

obesity in childhood and adulthood.9–12 The mechanism of these associations is unknown, 

but some studies suggest that perfluoroalkyl substances may disrupt metabolism and 

adipogenesis.13,14

In vitro, perfluoroalkyl substances can activate peroxisome proliferator-activated receptor 

(PPAR) α and γ,13 which may in turn affect lipid metabolism and adipocyte differentiation, 

respectively.14 For example, gestational PFOA exposure has been associated with increased 

leptin and subsequent obesity in adults in both animal models and human studies.15 Leptin 

and adiponectin are adipocytokines released by adipocytes, have roles in both energy 

homeostasis and glucose metabolism, and are associated with infant birthweight, weight 

gain, and risk of childhood obesity.16–19 Other endocrine and metabolism disrupting 

chemicals, such as persistent organic pollutants, have also been shown to increase 

adipogenesis via similar mechanisms.20

However, there are limited data about gestational perfluoroalkyl substances exposure and 

fetal markers of metabolism. Two studies have investigated the relationship between 

maternal perfluoroalkyl substances and neonatal adipocytokines, with conflicting results. 

One study reported no association between maternal plasma perfluoroalkyl substances 

exposure and neonatal adipocytokine concentrations,21 while the other reported a positive 
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correlation between maternal serum PFOS concentrations and neonatal adiponectin 

concentrations.22

The objective of this study was to further investigate the association between gestational 

serum perfluoroalkyl substances concentrations and umbilical cord serum adipocytokine 

concentrations in a prospective cohort of 230 pregnant women and their infants. Given the 

previously observed associations between perfluoroalkyl substances exposure and fetal 

growth, we hypothesized that neonates with higher perfluoroalkyl substances exposure 

would have lower neonatal leptin and adiponectin concentrations. Understanding the 

association between perfluoroalkyl substances exposure and metabolism biomarkers, such as 

adipocytokines, may uncover potential routes of intervention to prevent the development of 

childhood obesity.

METHODS

Study participants

For this study, we used data from the Health Outcomes and Measures of the Environment 

(HOME) Study, an ongoing prospective pregnancy and birth cohort originally designed to 

investigate the effect of early life exposure to toxic chemicals on children’s growth and 

development. We recruited pregnant women prior to 16 ± 3 weeks gestation from nine 

prenatal clinics in the Cincinnati, Ohio region between March 2003 and January 2006. 

Eligible women were at least 18 years of age, English speaking, without diabetes, cancer, 

HIV infection or bipolar disorder, not taking thyroid or seizure medications, living in a home 

built prior to 1978, and planning to deliver at one of three hospitals in the Cincinnati, OH 

region. Women provided written informed consent for both themselves and their child. The 

Institutional Review Boards (IRBs) of the delivery hospitals and Cincinnati Children’s 

Hospital Medical Center (CCHMC) approved the study. The Centers for Disease Control 

and Prevention (CDC) and Brown University IRB relied on the determinations made by the 

CCHMC IRB.

Perfluoroalkyl substances exposure assessment

Given the long serum half-life of PFOA, PFOS, PFNA, and PFHxS, and their known ability 

to cross the placenta,4,23 we used maternal serum concentrations of perfluoroalkyl 

substances to estimate fetal exposure. We collected maternal blood at 16 and 26 weeks 

gestation, and within 48 h of delivery. We used the earliest available sample to reduce the 

potential impact of pregnancyrelated blood volume changes. After separating serum from 

whole blood, the samples were stored at − 80 °C until analysis. Using online solid phase 

extraction coupled to high performance liquid chromatography-isotope dilution tandem mass 

spectrometry, we quantified serum concentrations of PFOA, PFOS, PFNA, and PFHxS.24 

Limits of detection (LODs) were: 0.082 ng/mL (PFNA), 0.1 ng/mL (PFHxS and PFOA) and 

0.2 ng/mL (PFOS). We included reagent blanks and quality control (QC) samples in each 

analytic batch, with coefficients of variation for repeated QC measurements of 

approximately 6 percent. We detected the four perfluoroalkyl substances in all samples. 

Other perfluoroalkyl substances also assessed in the general population, such as 

perfluorodecanoic acid (PFDA) and perfluorooctane sulfonamide, had low variability 
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between individuals in our sample. perfluoroalkyl substances concentrations were log2-

transformed for all analyses.

Neonatal adipocytokine measurement

We measured leptin and adiponectin concentrations in umbilical cord serum samples 

obtained at delivery using an ELISA sandwich assay and BioTeck microtiter ELx 808 plate 

reader. The LODs were 0.8 ng/mL (leptin) and < 2 μg/mL (adiponectin). We included 

reagent blanks and QC samples in each analytic batch, with coefficients of variation for 

repeated QC measurements of approximately 11 and 17 percent for leptin and adiponectin, 

respectively. Adipocytokine concentrations were log2-transformed for all analyses.

Covariates

Trained research staff collected data on potential confounders of the relationship between 

serum perfluoroalkyl substances and neonatal adipocytokines using computer-assisted 

questionnaires and medical chart abstraction. Maternal sociodemographic factors included 

maternal age, race, education, income, insurance status, and employment status. Perinatal 

covariates included parity, maternal body mass index (BMI) at 16 weeks gestation, 

gestational diabetes, pregnancy induced hypertensive disorders, depression symptoms, and 

delivery type. Maternal dietary and lifestyle factors included alcohol use during pregnancy, 

serum cotinine concentration (a biomarker of tobacco exposure during pregnancy), prenatal 

vitamin intake, and frequency of fresh fruit and vegetable consumption. Neonatal factors 

included gestational age, gender, and gestational age and sex-standardized birthweight z-

score.25

Statistical analysis

First, we described univariate characteristics of perfluoroalkyl substances and adipocytokine 

concentrations and examined correlations between leptin, adiponectin, and covariates. Next, 

we examined bivariate correlations between cord serum adipocytokines and maternal 

perfluoroalkyl substances serum concentrations. Using restricted cubic splines, we examined 

potential non-linear associations between maternal serum perfluoroalkyl substances 

concentrations, birthweight, and cord blood adipocytokines. Restricted cubic splines allow 

for non-linear doseresponse associations between exposure and outcome variables.26 We did 

not detect any significant non-linear associations between maternal serum perfluoroalkyl 

substances concentrations, birthweight, and cord blood adipocytokines using restricted cubic 

splines. Thus, we used linear regression to estimate the percent difference in neonatal leptin 

and adiponectin concentrations for each 2-fold increase in maternal perfluoroalkyl 

substances concentrations. Given their known associations with PFAS exposure27,28 and 

neonatal adipocytokines, we adjusted for maternal age, race, education, income, parity, 

maternal BMI, tobacco exposure, delivery mode, and infant sex.

Secondary analyses

We performed several secondary analyses to further characterize the association between 

maternal perfluoroalkyl substances concentrations and neonatal adipocytokines. First, we 

examined the association between gestational perfluoroalkyl substances concentrations and 
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differences in adipocytokines for neonates with similar adiposity. To do this, we used 

birthweight z-score as a proxy for neonatal adiposity, and calculated the residual deviation in 

leptin or adiponectin for a given birthweight z-score. We then estimated the association 

between perfluoroalkyl substances concentrations and these residuals, adjusting for maternal 

age, race, education, income, parity, maternal BMI, tobacco exposure, delivery mode, and 

infant sex. Next, because the leptin to adiponectin ratio has been associated with metabolic 

syndrome and insulin resistance in adults and children,29,30 we examined leptin to 

adiponectin ratio among neonates in relation to maternal perfluoroalkyl substances 

concentrations.

In addition, given previously observed sex differences in the association of prenatal 

perfluoroalkyl substances exposure with child health outcomes and neonatal leptin 

concentrations, we stratified our primary regression analysis by infant sex.15 Lastly, because 

of potential effects on fetal growth, we conducted sensitivity analyses excluding women with 

gestational diabetes, pregnancy induced hypertensive disorders, elevated depressive 

symptoms, and preterm birth in separate covariate adjusted regression models.17 A priori, 

we calculated that with a sample size of 200 and alpha of 0.05, we would have 80% power to 

detect a 0.2 standard deviation difference in cord blood adipocytokines for each standard 

deviation increase in serum perfluoroalkyl substances concentrations.

RESULTS

Among the 401 women initially enrolled in the HOME Study, we analyzed data for 230 

mother-infant pairs who had complete data. We excluded those with multiples or stillbirths 

(N = 12, 3%) and infants with chromosomal or genetic abnormalities (N = 2, < 1%). We also 

excluded neonates who had insufficient cord serum for adipocytokine measurement (N = 94, 

23%), missing maternal serum perfluoroalkyl substances concentrations (N = 52, 13%), and 

missing covariate information (N = 11, 3%). Women in the HOME Study (Table 1) were 

predominantly college educated (56%), white (66%), and had private health insurance 

(79%). Most infants were born at term (94%) and had birthweight z-scores between the 10th 

and 90th percentiles (80%). Covariates of women included in the study did not qualitatively 

differ from the full cohort of HOME Study participants (Supplemental Table S1 (online)).

Median maternal serum PFOA and PFOS concentrations were 5.6 ng/mL and 14 ng/mL, 

respectively (Table 1). Median PFOA concentrations among women in our sample were 

higher than concentrations in pregnant women of the U.S. National Health and Nutrition 

Examination Survey (NHANES) between 2003 and 2006 (2 ng/mL).15 Concentrations of the 

other perfluoroalkyl substances in our sample were similar to those among women in 

NHANES.

Among neonates in the study, median cord serum leptin and adiponectin were 9.8 ng/mL 

and 42 μg/mL, respectively (Supplemental Table S2 (online)). Neonatal adiponectin and 

leptin were weakly positively correlated (Pearson correlation coefficient 0.25, p < 0.001). 

Cord blood leptin was positively correlated with birthweight z-score (Pearson correlation 

coefficient 0.44, p <0.001) and maternal BMI (Pearson correlation coefficient 0.27, p 
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<0.001). Unlike leptin, adiponectin was not significantly correlated with either birthweight 

or maternal BMI.

In adjusted models, the association between maternal serum perfluoroalkyl substances 

concentrations and neonatal adipocytokine concentrations were not statistically significant 

(Table 2). For instance, each 2-fold increase in PFOA was associated with a non-significant 

increase in leptin (5%; 95% CI: −10, 22) and adiponectin (7%; 95% CI: −4, 19). Adjusting 

for sex- and gestational-age specific birthweight z-score did not significantly change the 

regression estimates (results not shown), and thus was not included as a covariate in our 

primary analyses.

Secondary analyses

There were no significant associations between maternal serum perfluoroalkyl substances 

concentrations and neonatal adipocytokines after accounting for infant adiposity, 

approximated with birthweight z-scores (Supplemental Table S3 (online)). Similar to the 

primary analyses, each 2-fold increase in PFOA was associated with a 3% increase in leptin 

(95% CI: −10, 17) and a 7% increase in adiponectin (95% CI: −4, 19). There were no 

associations between maternal serum perfluoroalkyl substances concentrations and neonatal 

leptin to adiponectin ratio (Supplemental Table S4 (online)). For example, there was a non-

significant decrease in leptin to adiponectin ratio for each 2-fold increase in maternal PFOA 

(−6%, 95% CI: −34, 35) and PFOS (−3%, 95% CI: −34, 43).

When we stratified our analyses by infant sex, perfluoroalkyl substances concentrations 

were positively associated with leptin concentrations in male infants, but inversely 

associated with leptin concentrations in female infants (Table 3). Each 2-fold increase in 

maternal serum PFNA was associated with a 50% increase (95% CI: 6, 112) in leptin in 

males and a 22% decrease (95% CI: −39, 0) in females. The interaction term between 

perfluoroalkyl substances and infant sex was statistically significant (p < 0.01) for PFNA, 

but not for the other perfluoroalkyl substances (p > 0.10). Finally, our results were similar 

when women with pregnancy induced hypertensive disorders, gestational diabetes, 

depressive symptoms, or preterm delivery were excluded from the regression analyses.

DISCUSSION

In this prospective cohort of pregnant women and their infants, maternal serum PFOA, 

PFOS, PFNA, and PFHxS concentrations were not associated with neonatal serum 

adipocytokine concentrations. Despite this, epidemiologic and toxicological evidence 

suggests that gestational perfluoroalkyl substances exposure is associated with impaired fetal 

growth.6,7 While we did not find evidence that neonatal adipocytokine concentrations, 

markers of fetal growth, were associated with perfluoroalkyl substances serum 

concentrations, there is a need to examine other biological pathways involved in the 

association of perfluoroalkyl substances with fetal growth and obesity risk in order to 

identify at-risk populations and develop interventions.

Our findings are consistent with other studies investigating the relationship between prenatal 

perfluoroalkyl substances exposure and markers of fetal metabolism. In a cohort of more 
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than 1500 mother-infant pairs, Ashley-Martin et al.21 found no association between maternal 

perfluoroalkyl substances concentrations (PFOA, PFOS, and PFHxS) and cord blood leptin 

and adiponectin concentrations, including with stratification by infant sex. In contrast, a 

cohort study from Japan22 reported that maternal serum PFOS, but not PFOA, was 

associated with cord serum adiponectin among 168 mother-infant pairs. That study did not 

report any differences with stratification by infant sex, and did not find any associations 

between PFOS or PFOA with neonatal leptin. Finally, Fleisch et al.10 found no association 

between maternal perfluoroalkyl substances concentrations (PFOA, PFOS, PFNA, PFHxS, 

and PFDA) during pregnancy and mid-childhood leptin and adiponectin concentrations. The 

literature varies in regards to which specific perfluoroalkyl substances are measured and 

reported, which is important as some perfluoroalkyl substances are substituted by less 

studied replacements.

Gestational PFOA exposure affects fetal growth in toxicologic studies. A meta-analysis of 

21 animal studies reported a 0.023 gram decrease in birthweight per mg/kg body weight 

increase in PFOA exposure in pregnant rodents.31 Similarly, two metaanalyses of 18 human 

studies estimated a 15 to 19 gram decrease in birthweight for every 1 ng/mL increase in 

maternal PFOA serum concentration.6,7 Epidemiological studies have also observed an 

association of prenatal exposure to some perfluoroalkyl substances with childhood growth, 

adiposity, and risk of obesity. In girls, Mora et al.11 found that maternal serum 

perfluoroalkyl substances concentrations (PFOA, PFOS, PFNA, and PFHxS) were positively 

associated with markers of adiposity in mid-childhood. In boys, Andersen et al.12 found that 

gestational PFOS and PFOA concentrations were associated with increased weight and BMI 

at age 12 months. In a Dutch cohort, Halldorsson et al.15 reported that gestational PFOA 

exposure was associated with increased BMI and waist circumference in females at age 20. 

Finally, in the HOME Study, we previously observed that maternal serum PFOA 

concentration was positively associated with adiposity in mid-childhood and changes in BMI 

trajectories from age 2 to 8 years.9

While the epidemiologic literature has consistently shown an association of prenatal 

exposure to some perfluoroalkyl substances with infant birthweight and childhood adiposity, 

the mechanism for these associations is unknown. The present and prior findings do not 

strongly support the hypothesis that perfluoroalkyl substances-induced alterations in leptin 

or adiponectin are responsible for the potential effect of perfluoroalkyl substances on fetal or 

childhood growth. However, there are other possible biological pathways worth additional 

consideration given that perfluoroalkyl substances can cross the placenta.23 These include 

epigenetic modification, oxidative stress, or other endogenous hormone pathways such as 

the hypothalamicpituitary-adrenal axis. In a study of adults, PFOA and PFOS were 

associated with expression of cholesterol metabolism genes.32 Moreover, in a pilot study 

among HOME Study participants, maternal serum PFOA concentrations were positively 

associated with neonatal peripheral leukocyte DNA methylation patterns; leptin receptor and 

promoter genes were not among the top 20 genes that differed by maternal serum PFOA 

concentrations.33 In a recent study, newborn PFOS concentrations were associated with an 

increase in reactive oxygen species concentrations.34 In vitro studies also report that some 

perfluoroalkyl substances can affect the action of hydroxysteroid dehydrogenases, which 

may in turn increase cortisol concentrations to adversely affect fetal growth.35 Future 
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molecular epidemiology studies could determine if these pathways are related to 

perfluoroalkyl substances exposure, as well as changes in fetal and childhood growth.

We found some evidence that infant sex modified the association between maternal serum 

PFOA, PFOS, PFNA, and PFHxS concentrations with neonatal serum leptin concentrations. 

This was statistically significant for PFNA, but not the other perfluoroalkyl substances. In a 

prior epidemiological study, prenatal PFOA concentrations were associated with increased 

leptin and decreased adiponectin in adult women, but not men.15 Adipocytokine profiles are 

known to differ by sex, and this may be related to differences in gonadal hormone 

concentrations across sexes. Perfluoroalkyl substances may interact with mechanisms 

affecting testosterone or estrogen to differentially affect adipocytokine production or 

metabolism across genders.36 Future studies should continue to consider sex-specific effects 

of perfluoroalkyl substances on fetal growth and childhood adiposity, as well as potential 

biological pathways.

Strengths of our study include its prospective design and extensive covariate information, 

allowing for adjustment of numerous potential confounders. Additionally, women in our 

study had higher gestational serum PFOA concentrations than some other studies,21,22 

which might have enabled us to detect a potential association between PFOA and neonatal 

adipocytokine concentrations. For instance, two prior studies had median PFOA 

concentrations of 1.4 and 1.7 ng/mL, as compared to 5.6 ng/mL in our study.21,22 In our 

cohort, gestational PFOA concentrations were higher in women who were older, more 

educated, and not of non-Hispanic Black race/ethnicity.28 Consistent with our results, prior 

studies have shown that perfluoroalkyl substances concentrations may differ by maternal 

race and parity.5,37 Behavioral and lifestyle factors may account for some of the variation in 

perfluoroalkyl substances concentrations associated with sociodemographic features in our 

cohort. There is variation in some sociodemographic characteristics of participants across 

this and prior studies (e.g., race/ethnicity),10,21 and it is unclear whether this might have 

influenced differences in results. Future studies could consider whether these factors modify 

the association between perfluoroalkyl substances exposure and fetal metabolism 

biomarkers.

Limitations of our study include the potential for confounding due to unmeasured factors, 

including maternal renal function. We were unable to correct for maternal glomerular 

filtration rate, which may affect perfluoroalkyl substances excretion, and could be correlated 

with fetal growth.38 Prior studies, however, have found that perfluoroalkyl substances related 

growth changes at birth cannot be fully explained by maternal renal function alone.7 

Additionally, we did not adjust for maternal dietary factors, which may impact both 

perfluoroalkyl substances exposure and fetal growth, and in turn, markers of fetal 

metabolism. Lastly, we did not account for potential variations in adipocytokine 

concentrations in the perinatal period. Maternal leptin increases during pregnancy, and has 

been positively associated with infant birthweight, but not with neonatal leptin 

concentrations.39 Neonatal adipocytokines represent a single measurement, and may not be 

generalizable to maternal or fetal adipocytokine exposure during pregnancy or postnatally. 

When measured postnatally, leptin concentrations rapidly decline in association with 
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physiologic weight loss.40 There is limited information regarding variations in adiponectin 

concentrations around delivery.

CONCLUSIONS

In this prospective cohort of pregnant women and their infants with higher serum PFOA 

concentrations than the general U.S. population, we did not find a statistically significant 

association of maternal serum PFOS, PFOA, PFNA, and PFHxS concentrations with 

neonatal cord blood adipocytokine concentrations. Further exploration of pathways of 

perfluoroalkyl substances associated changes in fetal growth may help identify biomarkers 

that could be used to identify at-risk populations and develop interventions in response to 

perfluoroalkyl substances exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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